International Journal of Novel Research in Physics Chemistry & Mathematics Vol. 10, Issue 3, pp: (107-114), Month: September - December 2023, Available at: <u>www.noveltyjournals.com</u>

Evaluation of the ground state correlation energy for two and three electron systems have (Z=15-20)

¹Ameer F. Shamkhi, ²Maryam Hakim AL-Quraishi, ³Qassim Shamkhi AL-Khafaji, ⁴Shaymaa awad kadhim, ⁵Hawraah hashem abbasde

1,2,3,4,5 Physics Department / Faculty of Science/ University of Kufa/ Iraq

DOI: https://doi.org/10.5281/zenodo.10100749 Published Date: 10-November-2023

Abstract: Correlation energies for all like ions of two electrons systems (P⁺¹³, S⁺¹⁴, Cl⁺¹⁵, Ar⁺¹⁶, K⁺¹⁷and Ca⁺¹⁸) and three electrons systems (P⁺¹², S⁺¹³, Cl⁺¹⁴, Ar⁺¹⁵, K⁺¹⁶and Ca⁺¹⁷) are obtained by taking difference between theoretical total energies of Hartree- Fock calculations and experimental total energies.

The atomic properties are calculated very important to describe the dynamics in atomic systems.

In this research used the division technique for the analysis the three electron system, also all the examining atomic properties were normalized and we used the atomic units in our calculations and the results is get by using Mathcad 14 program.

Keywords: correlation energy, Hartree- Fock, atomic units, atomic properties, Hamiltonian operator.

I. INTRODUCTION

The Hartree-Fock(HF) approximation ignores the correlation between electrons, but gives roughly 99% of the total electronic energy. Moreover, it is often accurate for the predication of atomic structure. Unfortunately, the part of the energy which the Hartree-Fock approximation ignores can have important chemical effects and this is particularly true when bonds are formed and/or broken. Consequently, realistic model chemistries require a satisfactory treatment of electronic correlation. The concept of electron correlation E_C was introduced by Wigner and defined as[1],

$$E_{\rm C} = E - E_{HF} \tag{1}$$

Where E is the exact non-relativistic energy, i.e., the difference between the correlated and the Hartree-Fock energies E_{HF}

II. THEORY

The wave function $\Psi(r_1, r_2, r_3, \dots, r_n)$ of any system is a mathematical expression which describes the system properties as position, momentum, energy, etc. In the uncorrelated wave function approximation, each particle is assumed to move in only the average field of all the other particles of the system. This kind uses approximation that called Hartree-Fock approximation (HF). In the correlated wave function approximation one can take into account the correlation between all the particles of the system by using the configuration interaction approximation (CI). The wave function for the one-particle is defined as :

$$\Psi_{n\,\ell\,m_{\ell}\,m_{s}}(\bar{r}) = R_{n\ell}(r)Y_{\ell m_{\ell}}(\theta,\phi)\sigma(s)$$
⁽²⁾

Novelty Journals

Page | 107

1

International Journal of Novel Research in Physics Chemistry & Mathematics

Vol. 10, Issue 3, pp: (107-114), Month: September - December 2023, Available at: www.noveltyjournals.com

the radial factor $R_{n\ell}(r)$ is related to the distance of electron from the nucleus and depends on the n (principal quantum number) and ℓ (angular momentum quantum number) while the angular factor(spherical harmonic) $Y_{\ell m_{\ell}}^{(\theta,\phi)}$ supplies an angle dependence and depends on the ℓ and m_{ℓ} (magnetic quantum number) [2].

The Hartree-Fock (HF) atomic wave functions are independent particle-model approximations to non-relativistic Schrödinger equation for stationary states. The single determinant can be written as the ant symmetrized product of all occupied HF spin-orbital for atoms [3].

$$\Psi_{HF}(123...N) = A \Pi(123...N)$$
⁽³⁾

Where A is the ant symmetrized operator given by :

$$A = \frac{1}{\sqrt{N!}} \sum_{P} (-1)^{P} P$$
⁽⁴⁾

 $(-1)^{P}$ Takes the values +1 and -1 for even and odd permutation, P is any permutation of the electron, and the factor $\sqrt{N!}$ introduced to ensure that the wavefunction is normalized. For our purpose the wavefunction can be written as

$$\Psi_{HF}(123...N) = \sum_{i < j}^{N} A_{ij}^{mn} (-1)^{P} A \Pi_{ij}$$
⁽⁵⁾

where the pair function A_{ij}^{mn} can be defined as:

$$A_{ij}^{mn} = \phi_i(m)\phi_j(n) - \phi_j(m)\phi_i(n)$$

And \prod_{ij}^{j} represents the product of all occupied HF-spin orbital except $\phi_i(m)$ and $\phi_j(n)$. i and j represent spin orbital labels, also m and n referr to electron labels.

The product $\Pi(123...N)$ in equation (3) can be defined as:

$$\Pi(123\cdots N) = \left| \phi_{1}(1)\phi_{2}(2)\phi_{3}(3)\cdots\phi_{N}(N) \right| \qquad \dots (7)$$

Equation(5) can be expressed in terms of Slater determinant as follows:

Vol. 10, Issue 3, pp: (107-114), Month: September - December 2023, Available at: www.noveltyjournals.com

For any atom or ion, the Hartree-fock spatial orbital may be written as:

$$\phi = \sum_{i=1}^{j} c_i \chi_i \tag{9}$$

Where C_i represents the constant coefficient yield from the SCF method And \mathcal{X}_i is the basis function as a standard normalized Slater-type orbital (STO's), which is given by:

$$\chi_{n\ell m_{\ell}}(r,\theta,\phi) = R_{n\ell}(r) Y_{\ell m_{\ell}}(\theta,\phi)$$
⁽¹⁰⁾

Many of the properties of an element depend on the energies of its electrons, that mean in each moment, we can specify the energy of the an electron precisely, but not its location at a given instant. So in quantum mechanics when we want determined the location we talk about the probability of finding an electron in specific region from the space at given instant[4].

The one-electron radial density function $D(r_1)$ represents the probability density function of finding an electron at a distance between r_1 and $r_1 + dr_1$ from the coordinate origin

defined as[5]

$$D(r_1) = \int_0^\infty D(r_1, r_2) dr_2$$
(11)

The radial electron-electron distribution function $f(r_{12})$, which describes the probability of locating two electrons separated by distance r_{12} from each other, was first introduced by Coulson and Neilson in their study of electron correlation for He(¹S) in the ground state[6,7]

Pair distribution function can be written as [8].

$$f(r_{12}) = 8\pi^2 r_{12} \left[\int_0^{r_{12}} r_1 dr_1 \int_{r_1 - r_{12}}^{r_1 + r_{12}} \Gamma(r_1, r_2) r_2 dr_2 + \int_{r_{12}}^{\infty} r_1 dr_1 \int_{r_{12} - r_1}^{r_{12} + r_1} \Gamma(r_1, r_2) r_2 dr_2 \right]$$
(12)

The one-electron expectation value $\langle r_1^n \rangle$ is determined by the expression as [9]

$$\langle r_1^n \rangle = \int_0^\infty D(r_1) r_1^n \, dr_1$$
 (13)

the inter-electron expectation values $\langle r_{12}^n \rangle$ is given by the relation [8]

$$\langle r_{12}^n \rangle = \int_0^\infty f(r_{12}) r_{12}^n \, dr_{12} \tag{14}$$

The virial theorem is a necessary condition for any stationary state. From the theorem, we are led to[10]

$$\langle E \rangle = \langle T \rangle + \langle V \rangle \tag{15}$$

$$\langle E \rangle = -\langle T \rangle = \frac{\langle V \rangle}{2} \tag{16}$$

Expectation value of potential energy proportional to the expectation values of $\langle r_1^{-1} \rangle$ and $\langle r_{12}^{-1} \rangle$ respectively, where [11]

$$\langle V_{en} \rangle = -Z. \langle r_1^{-1} \rangle \tag{17}$$

$$\langle V_{ee} \rangle = \langle r_{12}^{-1} \rangle \tag{18}$$

III. RESULTS AND DISCUSSION

Figure1 represented the relation between one-particle radial density distribution function D (r1) with the position (r₁) for two-electron system , the figures 2,3 for k and K α L α \equiv K β L α shells in three -electron system and figures (2,3) for three-electrons systems. From these figures observed that the maximum values of D(r₁) increases as Z increases , while the

Novelty Journals

Vol. 10, Issue 3, pp: (107-114), Month: September - December 2023, Available at: www.noveltyjournals.com

locations of these peaks are contracted toward the nucleus where we note the maximum probability density distribution function $D(r_1)$ for Ca⁺¹⁸ is closer to the nucleus from $D(r_1)$ for P⁺¹³ This difference occurs because the Ca⁺¹⁸ nucleus Z=20 exerts a much stronger attractive force on electrons than does the P⁺¹³ nucleus (Z=15), it was also observed from these figures when the distance equal to zero the probability of finding an electron equal to Zero { when r = 0 $D(r_1) = 0$ }. This means that the electron is cannot be existed inside the nucleus and when the distance is far away the probability of finding an electron equal to Zero also{ when $r = \infty$ $D(r_1) = 0$ }. That means not possible that the electron to be existed outside the atom.

According to the figure (3), it is found there are two peaks for $\Box \alpha L \alpha$ and $\Box \beta L \alpha$ Shells. The first peak represented the probability of finding the electron in the \Box -shell, the second peak represented the probability of finding the electron in the L-shell and we can, also, found that the probability of finding an electron in the K-shell is larger than that in the L-shell because \Box - shell is the nearest to nucleus ,so that attraction force between the nucleus and the electron is larger for K-shell than for L-shell According to coulomb law. In general we note the maximum probability density distribution function D(r₁) in two-electron system Slightly less than three-electron system because the two system have just two electron in K-shell but the three system have two electron in K-shell and one electron in L-shell this electron reduces attraction nuclear force and thus increasing distance.

Figure 4 for two-electron system , figures 5,6 and 7 for three-electron system representing the inter-particle distribution function $f(r_{12})$, which describes the probability of locating two electrons separated by distance r_{12} from each other .

$f(r_{12}) = \begin{cases} f(r_{12}) \\ f($

International Journal of Novel Research in Physics Chemistry & Mathematics

Vol. 10, Issue 3, pp: (107-114), Month: September - December 2023, Available at: www.noveltyjournals.com

from fig(4) where z increases the maximum value of the inter particle distribution function increases $f(r_{12})_{P-ion} > f(r_{12})_{S-ion} > f(r_{12})_{Cl-ion} > f(r_{12})_{Ar-ion} > f(r_{12})_{k-ion} > f(r_{12})_{Ca-ion}$ for two-electron system also like three-electron system fig(5), and observed that when $r_{12} = 0$ The probability of the inter particle distribution function $f(r_{12}) = 0$ this means that the electron not be closed on another electron and when the distance is far away ($r_{12} = \infty$) the probability of the inter particle distribution function $f(r_{12})$ equal to Zero also That means the diameter is not found out the atom. From figure (7) it can be noted that one peak in the K $\alpha L\alpha$ - shell and two peaks in the K $\beta L\alpha$ -shell because in the K $\alpha L\alpha$ shell the electron α in the K -shell associated with the electron α in the L- shell ,so the two electrons are parallel (has the same spin) and according to Pauli exclusion principle (no two electrons can occupy the same spin state) therefore; there is one probability of finding two electrons in small distance r_{12} and the second peak represented the probability of finding two electrons in small distance r_{12} and the second peak represented the probability of finding two electrons in small distance r_{12} and the second peak represented the probability of finding two electrons in small distance r_{12} and the second peak represented the probability of finding two electrons in small distance r_{12} and the second peak represented the probability of finding two electrons in small distance r_{12} and the second peak represented the probability of finding two electrons in small distance r_{12} and the second peak represented the probability of finding two electrons in small distance r_{12} and the second peak represented the probability of finding two electrons in small distance r_{12} for two and three-electron systems respectively

ion	Result and comparison	< r1 ⁻¹ >	$< r_{1}^{1} >$	$< r_{12}^{-1} >$	$< r_{12}^1 >$
p +13	Present work	14.68774	0.10257	9.15305	0.149670
P	Ref[12]	14.68774	0.102572	9.15305	0.1497
S ⁺¹⁴	Present work	15.68773	0.09601	9.77804	0.14011
	Ref[12]	15.68772	0.096006	9.77804	0.14011
e#15	Present work	16.68728	0.09023	10.40259	0.13167
u	Ref[12]	16.68728	0.090229	10.40259	0.13167
A+16	Present work	17.68736	0.08511	11.02769	0.12419
Ar	Ref[12]	17.68736	0.08511	11.02769	0.12419
K ⁺¹⁷	Present work	18.68727	0.08054	11.65259	0.11752
	Ref[12]	18.68727	0.080539	11.65259	0.11752
Cu ⁺¹⁸	Present work	19.68759	0.07644	12.27797	0.11153

Table (1): Expectation values $\langle r_1^{-1} \rangle$, $\langle r_1^1 \rangle$, $\langle r_{12}^{-1} \rangle$ and $\langle r_{12}^{-1} \rangle$ for two-electron system

Vol. 10, Issue 3, pp: (107-114), Month: September - December 2023, Available at: www.noveltyjournals.com

	.1.11	د	<	ح سبح	<
ion	snen	<ri>r1-></ri>	< r1->	< r12 ->	< r12->
	k	14.07500	0.10270	9.14316	0.14989
P+12	kβLα	9.02590	0.26975	2.87951	0.45070
	kala	9.02590	0.26975	2.60122	0.45349
	Average	10.90895	0.21406	4.87463	0.35136
	k	15.67503	0.09612	9.76823	0.14029
c+13	kβLα	9.65112	0.25162	3.08985	0.42018
3	kala	9.65112	0.25162	2.78953	0.42282
	Average	11.65909	0.19978	5.21587	0.32776
	k	16.67488	0.09033	10.39316	0.13183
C1+14	kβLα	10.27623	0.23577	3.30006	0.39353
CI	kala	10.27623	0.23577	2.97778	0.39602
	Average	12.40911	0.18729	5.557	0.30712
	k	17.67463	0.08520	11.01786	0.12434
+15	kβLα	10.90300	0.22181	3.51125	0.37007
4r	kala	10.90300	0.22181	3.16634	0.37244
	Average	13.16021	0.17627	5.89848	0.28895
	k	18.67449	0.08062	11.64287	0.11765
10+16	kβLα	11.52636	0.20940	3.72042	0.34924
K."	kala	11.52636	0.20940	3.35414	0.35149
	Average	13.90907	0.16647	6.23914	0.27279
	k	19.67396	0.07651	12.26731	0.11165
- +17	kβLα	12.15124	0.19831	3.93050	0.33064
a	kala	12.15124	0.19831	3.54225	0.33279
	Average	14 65881	0.15771	6 58002	0 25836

Tables (1) and (2) we note that the one-particle expectation value $\langle r_1^n \rangle$ for K-shell increases when n take value -1, while when n take value +1 this lead to increases to the attraction force between the nucleus and the electrons where the $\langle r_1^{-1} \rangle$ related to the attraction energy expectation value $\langle V_{en} \rangle = -Z[N, \langle r_1^{-1} \rangle]$,], N represents the number of electrons in the shell .Also from tables when Z increases the inter-particle expectation value $\langle r_{12}^n \rangle$ and $\langle r_1^n \rangle$ increases where $\langle r_{12}^{-1} \rangle$ represents repulsion energy between two-electrons, the values of $\langle r_{12}^n \rangle$ when n=-1 in the K $\alpha L\alpha$ – shell is smaller than those in K $\beta L\alpha$ shell because the two electrons in the K $\alpha L\alpha$ – shell are parallel this lead the distance between the two electrons decreased so the $\langle r_{12}^{-1} \rangle$ (which represent the repulsion energy between two electrons) is smaller in the K $\alpha L\alpha$ – shell , and when n=1 in the K $\alpha L\alpha$ – shell is greater than those in K $\beta L\alpha$ shell because the two electrons had antiparallel spins according to Fermi effect. When comparison we find the expectation values $\langle r_1^{-1} \rangle$ and $\langle r_{12}^{-1} \rangle$ in three-electron system less than two-electron system because influence of third electron in L-shell for three-electron system with electron found in K-shell and with nucleus. Table(3) and table(4) shows the expectation value energies of two and three-electrons systems as electron-nucleus attraction expectation value $\langle V_{en} \rangle$, the electron-electron repulsion expectation value $\langle V_{ee} \rangle$ the potential energy expectation value $\langle V \rangle$ and the expectation values of Hartree-Fock energy $\langle E_{HF} \rangle$.

ion	Result and comparison	- <v<sub>en></v<sub>	<vee></vee>	- <v></v>	< <i>T</i> >	-< <i>E_{HF}</i> >
70+12	Present work	440.63220	9.15305	431.47915	215.73958	215.73958
P.13	Ref[12]	440.63223	9.15305	431.47918	215.73959	215.73959
~ 14	Present work	502.00736	9.77804	492.22932	246.11466	246.11466
5.14	Ref[12]	502.00729	9.77804	492.22926	246.114628	246.114628
cr1+15	Present work	567.36752	10.40259	556.96493	278.48246	278.48246
CI-	Ref[12]	567.36758	10.40259	556.965	278.482499	278.482499
4	Present work	636.74496	11.02769	625.71727	312.85864	312.85864
Ar	Ref[12]	636.7451	11.02769	625.71741	312.858707	312.858707
12+17	Present work	710.11626	11.65259	698.46367	349.23183	349.23183
KI	Ref[12]	710.11633	11.65259	698.46375	349.231873	349.231873
C +10	Present work	787.50360	12.27797	775.22563	387.61282	387.61282
Caris	Ref[13]			775.22035	387.60930	387.61106

Table (3): The expectation values for all attraction, repulsion, kinetic and Hartree-Fock energies for two-electron system

Vol. 10, Issue 3, pp: (107-114), Month: September - December 2023, Available at: www.noveltyjournals.com

Ion	shell	- <ven></ven>	<vee></vee>	- <v></v>	<t></t>	- <e<sub>HF></e<sub>
	K	220.12590	9.14316	210.98274	105.49137	105.49137
	KβLα	135.38850	2.87951	132.50899	66.25449	66.25449
P+12	Kala	135.38865	2.60122	132.78743	66.39371	66.39371
1		400.00205	14 (2200	476 27016	328 12057	238.13957
	total	490.90303	14.02589	470.27910	256.15957	238.14042 [13]
S+13	K	250.80048	9.76823	241.03225	120.51613	120.51613
	KβLα	154.41792	3.08985	151.32807	75.66403	75.66403
	KCLC	154.41776	2.78953	151.62823	75.81411	75.81411
	Antal	559 63616	15.64761	543 98855	271 00427	271.99427
	total	559.05010		545.70055	2/1.7742/	271.99241[13]
	K	283.47296	10.39316	273.07980	136.53990	136.53990
out1	KβLα	174.69591	3.30006	171.39585	85.69792	85.69792
CI-	Kala	174.69591	2.97778	171.71813	85.85907	85.85907
		(22.0(470	16 (71)	(1(10270	208 00680	308.09689
	total	032.804/8	10.0/1	010.19578	208.09089	308.09443[13]
	K	318.14334	11.01786	307.12548	153.56274	153.56274
A .+	KβLα	196.25400	3.51125	192.74275	96.37138	96.37138
15	Kala	196.24356	3.16634	193.07722	96.53861	96.53861
	total	710 64090	17 60545	602 04545	346 47273	346.47273
	total	/10.04090	17.09343	074.94343	340.47273	346.44647[13]

From the tables (3) and (4) we noted that increasing all energies as nuclear charge increase .We note the attraction energy expectation values $\langle V_{en} \rangle$ are larger than the repulsion energy expectation value $\langle V_{ee} \rangle$ because the distances between the electrons and the nucleus are smaller than the distances between the electrons ,and it can be observed from table(4) the expectation value of repulsion energy in the K α L α is smaller than that in the *K* β L α because the distance between two electrons in the K α L α is larger than that in the *K* β L α .

Also it noted that energies largest in three-electron than two-electron system because it have three term of attraction force between nucleus and electron ,also has three repulsion terms resulted from the interaction between the electrons while two-electron system has two term of attraction force and the repulsion term.

T. 1.1.	(=)	1(C)		O 1.1	F		C 1		1			
I aniec		and thire	nrecented	I OTTELSTION	Hnerow	H	tor two_electron c	verem and	Inree electron	SUCTOM TOC	necriveix	7
rautos	21	and (0) ic	Diesenieu	Conciation	LICIEV	LCOTT	101 two-ciccuon s	votum and		system res		1
	<u> </u>				- 01	0011		1				

Table ((5): the corre tw	lation energy vo-electron		Table (6): the	correlation en three-elec	ergy for tron		
ion	-Eo	E _{HF}	Ecorr		ion	-Eo	E _{HF}	E _{corr}
P+13	216.34325	215.73958	0.60367		P+12	238.82947	238.13957	0.68990
S+14	246.89231	246.11466	0.77765		S+13	272.88055	271.99427	0.88628
C1+15	279.47886	278.48246	0.99640		C1+14	309.22491	308.09689	1.12802
Ar ⁺¹⁶	314.10657	312.85864	1.24793		Ar ⁺¹⁵	347.84270	346.47273	1.36997
K+17	350.78647	349.23183	1.55464		K+16	388.76515	387.04969	1.71546
Ca+18	389.51488	387.61282	.190206		Ca+17	432.06541	429.89426	2.17115

the correlation energy is the difference between the exact non-relativistic energy (E_{\circ}) and the Hartree-Fock (HF) energy (E_{HF}) of a system $E_{corr} = E_{\circ} - E_{HF}$ and we noted from above tables that correlation energy depended on nucleus charge so it increases when nucleus charge increases. Also note that the correlation energy largest in three-electron system than two electron system because the exact energy bigger of three-electron system than two-electron system.

Vol. 10, Issue 3, pp: (107-114), Month: September - December 2023, Available at: www.noveltyjournals.com

IV. CONCLUSION

1. When the atomic number Z increases, the one-particle radial density distribution function $D(r_1)$ and the interparticle distribution function $f(r_{12})$ are increased for two and three electrons systems.

2. For both one-particle expectation $\langle r_1^n \rangle$, and inter-particle expectation $\langle r_{12}^n \rangle$ increase when Z increase for two and three electrons systems.

3. All the expectation values of the energies $\langle V_{en} \rangle$, $\langle V_{ee} \rangle$, $\langle V \rangle$, $\langle T \rangle$ and $\langle E_{HF} \rangle$ increase when the atomic number increases for two and three electrons systems.

4. It can be observed that flat region at small r12 of inter particle density function for K α L α -shell due to Fermi effect which means there is no probability to find two electrons in the same spin together in small distance between them

5. The correlation energy increases with increases in atomic number for all studied systems.

ACKNOWLEDGEMENTS

We would like to extend our sincere gratitude and admiration to the University of Kufa/Iraq for the assistance and resources it offers researchers. Particularly, the physics department laboratory at the scientific college to support them.

Ethical Approval: The study protocol was approved by local ethics committee.

Disclaimer: None

Conflict of interest: There are no conflicts of interest to declare.

Funding disclosure: support by ourselves.

REFERENCES

- [1] E. Farhan and Q. shamkhi, " Study of atomic properties in K-Shell for Na+9, Mg+10, Al+11 ions in position space", Journal Of Kufa Physics Vol.6, No.1 ,(2014)
- [2] Q. shamkhi., Sh. Awad , H. Hadi and N Hadi, Calculating the Energy of B+2-IonUsingDivision Technique . Journal of Advanced Physics , Vol 5:p.1-4, 2016
- [3] Q. shamkhi ph. D. Thesis "A study of Correlation energy and orbital correction function for two and three electronsystem" University of Al-Mustansiriyah, college of science. 2005.
- [4] R. Fitzpatrick, Quantum Mechanics, 3rd edition 2011.
- [5] T. Koga and H. Matsuyama , J. Theor Chem Acc ,V.115,p59–64, (2006).
- [6] P. Dressel and F. King, J. Chemical physics, V. 100, No. 10 ,p7515–7522, (1994).
- [7] R. Benesch and Vedene H. Smith, J. Chemical Physics, V. 55, No. 2 ,p 482-488, (1971).
- [8] N.Moiseyev, J.Katriel and R. Boyd , J. Theoretica Chimica Acta, V. 45, p61 –67, (1977).
- [9] A. Gupta and R. J. Boyd, J. Chemical physics, V. 68, No. 4, p1951 –1957, (1978).
- [10] R. Jaber. and Q. shamkhi 2014. "Study of Energy and some atomic properties for electronic shells at ground state of three electron systems by analysis Hartree-Fock- Roothaan wavefunction".J. Of Kufa – Physics.V.5.No.1.P.91-102,2013.
- [11] K. Sen and V. Reddy, J. Chemical Physics, V. 81, No. 5213 . p5213-5214, (1984).
- [12] Sh. Awad, " calculation the Hartree -Fock energy of 1s shell for some ions ", Journal of kufa –Physics Vol.6, No.1 (2014).
- [13] E.Clement and C.Roetti, J.Atomic Data and Nuclear Data Tables Vol.14, No.3-4(1974) 177-478.